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Abstract
The blackbody spectrum “half-power points” are used to assign effective Q “quality factor”
values that are found to be less than unity whether frequency or wavelength scaling is used.
A comparison with values for coherent oscillators is made. This exercise blends two of
Kirchhoff’s interests, and is instructive in its own right, as it bridges the often mutually
exclusive engineering and scientific disciplines.
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1. INTRODUCTION

In 1860, the mathematical physicist Gustav Kirchhoff coined the term “blackbody” to denote an
ideal surface that absorbs all incident electromagnetic radiation[1]. Fifteen years earlier, as a student,
he had introduced the two eponymous circuit laws now universally familiar to electrical engineering
(EE) students[2]1,2 This paper establishes another link between these disciplines with which he was

1 On pages 513 and 514 we find the enunciation of “Student” Kirchhoff’s laws: “In order to be able to derive the given proportion in
a convenient way, I will first prove the following theorem:
If galvanic currents flow through a system of wires that are connected in any way, then:
1) if the wires 1, 2, .. 𝜇 meet in one point, I1 + I2 + . . + I = 0, where I1, I2, .. denote the intensities of the currents flowing through
those wires, all counted as positive towards the point of contact;
2) if the wires 1, 2, .. 𝜈 form a closed figure, I1 · 𝜔1 + I2 · 𝜔2 + . . + I𝜈 · 𝜔𝜈 = the sum of all electromotive forces located on the
path: 1, 2, .. 𝜈 ; where 𝜔1, 𝜔2 , . . the resistances of the wires, I1, I2, . . denote the intensities of the currents that flow through
them, all counted as positive in one direction.”

2 Kirchhoff was but one of many gifted “students” who contributed to a remarkable flowering of mathematics and physics in
Königsberg in the 19𝑡ℎ century. See, e.g., Arthur Ballato, “Piezoelectricity: History and new thrusts,” IEEE International Ultrasonics
Symposium Proceedings (1996) 575-583. In addition to the personages noted in this paper, one might mention a few other
connections. Kirchhoff was the doctoral advisor of Roland von Eötvös (PhD, 1870) andMax Noether (Dr phil., 1868). Max Noether
was the father of Emmy Noether (PhD, Universität Erlangen-Nürenberg, 1907) and Fritz Noether (Dr phil., Universität München,
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so conversant, and celebrates the bicentennial of his birth. Connecting blackbody physics and circuit
engineering is apposite, not only for didactic reasons, but because it serves also as a reminder that
not a few notable scientists began their careers with an engineering education, e.g., Röntgen, Debye,
Dirac, Onsager, Bardeen, etc.

Studies of blackbody (BB) radiation led, as is very well known, to quantummechanics, and so much
has been written about it at all levels that it might be asked if anything new could, (or should!), be
added.[3–35]. We answer in the affirmative. It is both pedagogically interesting and apt to apply an
EE concept to quantify BB radiation. Prescinding from the legitimate objection that such a disparate
application, whereby the Q concept usually applied to a coherent resonance should be applied to a
completely incoherent photon fluid, we nevertheless find the result to be fully consonant with the
exceedingly low values intuitively expected, but unexpectedly to be independent of the blackbody
temperature.3

We begin by discussing briefly lumped electrical circuits, and introduce the concept of Q from an
EE circuit point of view. This is followed by a bare-bones sketch of BB. Finally, the equivalent Qs
of BB spectra are evaluated.

2. LUMPED ELECTRICAL CIRCUITS – EE 101

It can be said that with the introduction of electrostatic generators to produce electric charge, and
Leiden jars for its storage, the science of electricity began its steps to maturity. Volta’s batteries [36],
subsequently permitted production of steady electrical currents, and led to the laws of Ørsted,[37],
Ampère,[38–40], Ohm[41], and, of course, Kirchhoff. These lumped circuit developments preceded
the magisterial unification of electrodynamics at the hands of Faraday and Maxwell with the intro-
duction of field concepts.[42–46]. Today, the historical roles are reversed, and lumped circuits are
considered to follow logically from themore general concept of fields[47]. The correspondences be-
tween the Maxwellian (field) and the EE (lumped) approaches have been discussed by Hansen[48],
Dicke[49], and particularly by Fano, Chu, and Adler, [50] as well as by others[51–54]. Lumped
circuit elements (capacitors, inductors, and resistors)[55], represented by graphical symbols, and
their mutual attachments to form circuits, follow from the assumption of unbounded lightspeed (1/c
→ 0), and as such they have no spatial extensions, nor do they mirror the physical geometry of the
system represented. They are idealized repositories of electric and magnetic energy and an element
of dissipation, with associated equations: i = C · (de/dt) (capacitor), e = L · (di/dt) (inductor), and
e = R · i (resistor). In these equations, i is the current through the element, e is the voltage across
the element, C the capacitance, L the inductance, R the resistance, and d/dt the time operator.

1909). Emmy discovered deep connections between symmetries in nature and conservation laws. See E. Noether, “Invariante
Variationsprobleme,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse.
(1918) 235–257. Emmy emigrated to the US and Fritz emigrated to the USSR; he was shot by Stalin’s NKVD in 1941.

3 Discovery of the cosmic microwave background spectrum [Robert H. Dicke, Phillip James Edwin Peebles, Peter G. Roll, and
David T. Wilkinson, “Cosmic black-body radiation,” Astrophysical Journal 142(1) (1965) 414-418; Arno Allan Penzias and Robert
Woodrow Wilson, “A measurement of excess antenna temperature at 4080 Mc/s,” Astrophysical Journal 142(1) (1965) 419-421]
led to finding the purest example of a blackbody in nature, revealed in the results of the COBE experiment. See, e.g., John C.
Mather, et al., “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument,” Astrophysical
Journal 420(2) (1994) 439-444; Dale J. Fixsen, et al., “The cosmic microwave background spectrum from the full COBE1 FIRAS
data set,” Astrophysical Journal 473(2) (1996) 576-587. Additional blackbody spectra arise from neutron star collisions, see, e.g.,
Albert Sneppen, “On the blackbody spectrum of kilonovae,” Astrophysical Journal 955(1) (2023) 44. Blackbody radiation is truly
ubiquitous; what could be more ubiquitous than the universe?
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Nature proceeds in the time domain, and its descriptions take the form of differential equations
(DEs). Not infrequently it is more readily interpreted by transformations into the frequency domain,
whereby DEs are converted to algebraic functions. In the case of electrical networks, the DEs
characterize generalized Ohm’s laws relating voltage (e) across, and current (i) through an element,
and the Laplace transform is used to convert these DEs of individual circuit elements into algebraic
functions relating the independent and dependent variables, i.e., the input-output relations.4 The
forerunner of this method, “operational calculus,” was largely developed by Heaviside[56–63].

These individual circuit elements are then combined, in accordance with the topology of the given
network, to produce network input-output relations that take the form of rational functions, i.e.,
quotients of finite polynomials – a form more easily manipulated and interpreted than the original
DEs.5,6 The boundary conditions on the DEs are simply Kirchhoff’s laws imposing constraints
on currents at each junction of elements (nodes), and on voltages around each complete loop of
elements. Circuit theory is now a mature field, having come a long way from its infancy with
Kirchhoff[64–70].

3. THE CONCEPT OF Q AS A QUALITY FACTOR

The lumped circuit elements L and C store magnetic and electric energy, respectively, while R,
representing loss, dissipates energy. In circuit configurations comprised of R, L, and C elements,
it is found that the response to steady-state excitation varies with frequency. At particular fre-
quencies, corresponding to solutions of the homogeneous DEs characterizing the configuration
(complementary DE solutions), the responses reach local extrema, limited only by the presence of
loss. Quantifying these “resonances” in magnitude and frequency extent led to the concept of circuit
Qs. Johnson [71], first used the symbol “Q”, while Legg and Given [72], coined the term “quality
factor.” Green [73], gives an excellent account of its early history. A search for an alternative
etymology of “Q” did not succeed[74–85].

Equivalent definitions of Q as a selectivity parameter quantifying the sharpness of resonances appear
in the EE literature[6, 48, 50, 86, 87]. Some follow from various energy or power relations, e.g.
Q = 𝜔 ·

( (
Eelectric + Emagnetic

)
/Pdissipated

)
; Q = 𝜔 · (Peak stored energy/Average power);

Q ∝ (Energy stored/Energy dissipated per cycle); or as frequency derivatives of immittance
functions:

Q ∝ 𝜔 · 𝜕 (susceptance) /𝜕𝜔 ∝ 𝜔 · 𝜕 (reactance) /𝜕𝜔; or as the shape factor of a resonance
curve: Q = fo/Δ 𝑓 ; or simply as a circuit relation: Q = (1/R) ·

√
(L/C).[48, 88] Alternatively,

it may be defined as Q = 𝜋/𝛿, where 𝛿 is the logarithmic decrement when the circuit is subjected
to a transient excitation in the time domain. Additional aspects are discussed by Feld [89], and

4 The input-output relations, for lumped, linear, finite, passive, and bilateral elements are characterized by quotients called
“immittances,” i.e., either impedances of admittances, defined as the ratio of an effect to its cause. For example, Ohm’s law, (a
zeroth-order linear DE), states that the current (i, the effect) through a resistor is proportional to the voltage (e, the cause) applied
across it: i/e = g, the admittance.

5 In the sinusoidal steady-state, transients, (complementary DE solutions), are absent because of the inevitable presence of loss.
6 For resonances in piezoelectric materials, caution is advised, as there is an interplay between loss and piezocoupling in determining
resonance widths, and thus Q. See Arthur Ballato, “Interpreting piezoceramic impedance measurements,” in Dielectric Materials
and Devices, edited by K. M. Nair, et al., (Westerville, Ohio, American Ceramic Society, 2002) 369-410.

175



https://wjphysics.com/ | June 2024 Arthur Ballato and John Ballato

particularly byOhira [90, 91], and references therein. The concept of Q is also relevant in connection
with probability distribution functions; see TABLE 6.

3.1 Application to the Series RLC Circuit

In the casewhere lumped elements R, L, and C are in series as in FIGURE1 (a), an impressed voltage
e, with exp (j𝜔t) temporal variation, placed across the end terminals, will produce a steady-state
common current i having the same temporal variation, albeit generally with a different phase with
respect to that of the voltage. The complex input impedance is defined to beZ = e/i; complex admit-
tance is defined asY = 1/Z (the term “immittance” is used as a general term for either Z or Y).While
the R, L, and C values are constants, the immittance is a function of frequency, as also, in general,
are its real and imaginary parts. These are defined as: resistance = Re (Z), reactance = Im (Z), con-
ductance =Re (Y), and susceptance = Im (Y). With the further definitions of normalized frequency
Ω, and quality factor Q as: Ω = 𝜔 ·

√
(𝐿 · C) and Q = (1/R) ·

√
(L/C), the Laplace-transformed

expressions for input impedance, normalized to R, is Z/R = [1 + j · Q · (Ω − 1/Ω)].[92] It then
follows that normalized conductance, Re (R · Y) = g = 1/

[
1 + Q2 · (Ω − 1/Ω)2] . This is plotted

in FIGURE 1 (b) as function ofΩ for a number of Q values[92]. The dissipated power is proportional
to g, and is a maximum atΩ = 1, the resonance frequency; this is the eigenvalue of the corresponding
DE for the circuit, now appearing as the root of a polynomial.

Figure 1: (a) The series RLC circuit. Resistor R is the dissipative component, evolving power (heat).
Inductor L and capacitor C are lossless components that store energy. (b) Resonance curve of the
series RLC circuit, with 3dB points shown. Frequency is defined as f = 𝜔/2𝜋. Resonance frequency
f1 equals 𝜔1/2𝜋, where L·C·𝜔2

1 ≡ 1, and normalized frequency is Ω = 𝜔 · √(L·C) = f/f1. Quality
factor, Q = (1/R)·√(L/C) = 1/ΔΩ3𝑑𝐵. When discussing BB, the EE symbol “f” is replaced by “𝜈.”
As a sop to the EEs, shown are the “3dB points,” rather than the true ½-power points. These are
related by 10·log10(2) ≈ 3.0103 dB.
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3.2 The Half-Power Points

The frequency expanse, centered about the resonance peak, that is consonant with the definitions
of Q given above, is shown in FIGURE 1 (b) as ΔΩ3dB. This is the 3-dB “bandwidth” found in
the EE literature. More accurately, the bandwidth is reckoned as the frequency difference between
the two points where the dissipated power in the circuit is one-half of the maximum[93]. The half-
power (physics) and 3-dB (EE) points are related by 10 · log10

(
2±1) ≈ ±3.0103dB. For the series

(or parallel) RLC circuit, the half-power points are determined from the condition g = ½, yielding
two frequencies Ω(±) =

√(
1 + 1/(2 · Q)2) ± 1/2Q. These are related by the usual definition: Q=

1/
[
Ω(+) −Ω(−) ] = 1/ΔΩ = (1/R) ·

√
L/C.

3.3 The Butterworth-Van Dyke (Bvd) Circuit

While the RLC example is useful as an introduction to circuits, a simple modification, known as
the BVD circuit, has many more applications[88, 93]. The BVD circuit consists of the series RLC
circuit shunted by a parallel capacitor, C0. As there is no dissipation due to C0 the expressions for
Ω(±) are unaltered. The BVD circuit is used to represent many single resonance phenomena[93].
There are two capacitors in the BVD circuit, so the quantity r = Co/C, comes into play. While
the quantity g = 1/

[
1 + Q2 · (Ω − 1/Ω)2] does not involve r, so that Q = 1/

[
Ω(+) −Ω(−) ] may

be used, many of the other network functions, such as admittance magnitude, do, and care must
be exercised in using alternative definitions of Q as equal to f/Δ 𝑓 because “3 dB bandwidth” (Δf)
becomes a property jointly of Q and r.[94] The ratio 1/r appears as a lossless coupling factor in
many guises, for example in piezoelectrics and in the Lyddane-Sachs-Teller (LST) relation[93]. In
these cases, the “bandwidth” arises from the coupling, and not the loss, and 1/Q = 0.

3.4 Quality Factors of Other Phenomena

Resonance spectra having loss mechanisms are never infinitely narrow (Dirac 𝛿-functions) but have
finite bandwidths. Q, as a measure of the “quality” of the resonance, has been used in applications
that vary from laser and molecular resonances to electrical circuits to electromechanical quartz
oscillators to the bouncing of a golf ball on a hard surface. Some examples are shown in TABLE 1.

4. BLACKBODY RADIATION – BB 101

4.1 Brief Synopsis of BB History

Electromagnetic (EM) radiation can be described by four attributes: wavelength, intensity, polar-
ization, and coherence.[95, 96]. In the study of blackbody radiation one seeks a relation between
wavelength and intensity in the special case of radiation in steady-state equilibrium inside an isolated
enclosure by an ensemble of completely incoherent harmonic oscillators, with random polarizations,
at a uniform absolute temperature, T[9–11, 13, 17, 97]. Attempts at an explanation of the form
of the intensity versus wavelength curve, from classical modal equipartition and thermodynamic
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Table 1: Table of linewidths and Q values for various resonant structures. The Hg linewidth assumes
radiation damping only. Other tables are given in Green[73], and in Smith[77].

System Q Remarks Reference

Golf ball 10 C𝑅 = 85% [94] [73, 77]
GaN LED 25 16nm linewidth @ 400nm [98, 99]
BK7 glass 700 0.3 – 2.5 𝜇m band [93]
Nd:YAG glass laser 1.3·10+3 210 GHz linewidth @1064nm [99]
Ruby laser 7.2·10+3 60 GHz linewidth @ 694.3nm [99]
He-Ne gas laser 3.2·10+5 1.5 GHz linewidth @ 632.8nm [99]
Si wineglass resonator 4·10+6 2 MHz @ RT [100, 101]
Quartz resonators 5·10+6 2.5 – 5 MHz @ RT [102–105]
Quartz resonators 50·10+6 2.5 – 5 MHz @ 4.1K [102–105]
Green Hg line 4.6·10+8 1.2 MHz linewidth @ 546.1nm [6]
Earth spin-down 2.6·10+12 Δt ≈ 2.3 ms/cy [106]

arguments led to puzzling and contradictory results. The Rayleigh-Jeans (R-J) equipartition result
[22–25], gave good agreement with experiment at long wavelengths, but predicted an unbounded
result at short wavelengths; the famous “ultraviolet catastrophe.”[26], At the other extreme, Wien’s
thermodynamic result [16–21], was in agreement with experiment at short wavelengths, but failed
at longer wavelengths in what might be called the “infrared shortfall.” By interpolating between
these limiting cases,7 thereby requiring the discretization of energy[27], Planck [28–31] ultimately
reached the correct expression, which reduced to the earlier expressions in their correct limits, as
well as to the known T4 variation of total radiated power with absolute temperature, the earlier
Stefan-Boltzmann law [12–15]. Figure 2 portrays the situation. The one pre-Planckian experimental
truth that survived the quantum revolution was Wien’s Displacement law: The spectral peak occurs
at a wavelength (𝜆𝑝) inversely proportional to T.[8, 18]; the Stefan-Boltzmann law is a special case
of the Displacement law. A much richer account of BB history is given by Richtmyer[5].

4.2 The Spectral Form of BB Radiation

According to the quantum view, the “shape” of any spectrum consists of a steady-state average of an
innumerable number of discrete events; this being consonant with the traditional description of BB
radiation as a continuous function of frequency (𝜈) or of wavelength (𝜆) because of the smallness
of Planck’s constant. The exact shape of the blackbody spectrum depends not only on the absolute
temperature, but on the dispersion (bookkeeping) rule adopted: wavelength, “intensity (or other
related quantity) per unit 𝜆 increment,” or frequency, “intensity (or other related quantity) per unit 𝜈
increment” parameterization. In either case, we give the result in scaled form, such that the maxima
are independent of temperature.

7 With S the entropy of an irradiated linear, monochromatic, vibrating resonator, and U the corresponding vibrational energy, theWien
displacement law (S = f(U/𝜈)) implies that 𝜕2S/𝜕U2 ∝ U−1, while, for the classical harmonic oscillator, 𝜕2S/𝜕U2 ∝ U−2. Planck,
the master thermodynamicist, interpolated between these by setting 𝜕2S/𝜕U2 = 𝛼/[U(U + 𝛽)], the simplest form yielding agreement
with experiment, but requiring introduction of “h”, a new constant of nature. See [30, 33, 34].

178



https://wjphysics.com/ | June 2024 Arthur Ballato and John Ballato

Figure 2: Log-log plots of the Raleigh-Jeans, Wien, and Planck distribution functions. The Planck
function interpolates between the other two, and yields the distribution correct at both frequency
limits. The Wien function obeys Maxwell-Boltzmann statistics, whereas the Planck function obeys
Bose-Einstein statistics.

Any portrayal of BB spectra involves Boltzmann’s constant k𝐵, Planck’s constant, h, lightspeed, c,
and numerics, and the admixture of these depends on the quantity described. The glossary of names
for various quantities associated with BB radiation is oversized; it includes, inter alia: spectral
radiance, emittance, excitance; monochromatic specific intensity; radiant intensity; spectral energy
density; spectral radiance per unit frequency, per unit wavelength; brightness; irradiance; power
intensity; etc., etc. The MKS units attached to these terms may agree or not, and one additionally
finds in the literature differences in numerical factors assigned to terms bearing the same name. As
we use normalized forms these terms are irrelevant for us.

Stripped to essentials, the BB spectra are given by FM (X) = XM/
(
eX + n

)
, where X, the indepen-

dent variable, equals (h𝜈/kT) = (hc/𝜆𝑘𝑇) = 1/Y. M names the parametrization, with M = 3 or
5 (𝜈 or 𝜆 bookkeeping, respectively); the two M values differ because 𝜆 · 𝜈 = c, so the increments
are related by d𝜆 = −c · d𝜈/𝜈2. Coefficient n names the statistics, with n = – 1 for Planck’s
exact result (Bose-Einstein statistics), and n = 0 for Wien’s approximation (Maxwell-Boltzmann
statistics). Extensions to other M and n values are mentioned briefly in Sec. V. The peak (X𝑝)
of F𝑀(X) is found from the root of the equation X · eX/

(
eX + n

)
= M, or the alternative form

n · e−X = [(X/M) − 1].[9] At the peak, FM
(
Xp

)
= XM

p /
(
eXp + n

)
. For the Planckian cases, n = –

1, and we set FM (X) = Pℓ3 (𝜈) = X3/
(
eX − 1

)
and Pℓ5 (𝜆) = X5/

(
eX − 1

)
. These are graphed in

FIGURE 3 and FIGURE 4, respectively. In each of these scaled forms, the peak is invariant with
temperature.
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Figure 3: Plot of the normalized quantity Pl3(X) = X3/(e𝑋 – 1) vs X = h𝜈/k𝐵T, with ½-power points
X(±)

1/2 and ½-power bandwidth Δ3 shown. Pl3(X) = S𝜈/(T3·K1), where K1 ∝ k3
𝐵/(c

2·h2); units of K1

are [J/(m2·K3)]. S𝜈 is a spectral radiance function.

Figure 4: Plot of the normalized quantity Pl5(X) = X5/(e𝑋 – 1) vs Y = 1/X = 𝜆k𝐵T/hc with ½-power
points Y(±)

1/2 and ½-power bandwidth Δ5 shown. Pl5(X) = S𝜆/(T5·K2), where K2 ∝ k5
𝐵/(c

3·h4); units
of K2 are [J/(m3·s·K5)]. S𝜆 is a spectral radiance function.
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4.3 Functional Behavior of the BB Spectra at Frequency and Wavelength Limits

Whereas there is an “ultraviolet catastrophe” for the R-J theory, there is no corresponding “infrared
catastrophe” for the Wien theory; in the Wien theory the intensity correctly approaches zero in both
high and low frequency limits. However, in theWien theory, the functional variation goes as 𝜈3 (𝜆5)
instead of the correct Planckian 𝜈2 (𝜆4) behavior. This is the “IR deficit”; the intensity approaches
zero too quickly as 𝜈 diminishes to zero. Table 2. shows the various limiting values.

Table 2: Functional variation of the Rayleigh-Jeans, Wien, and Planck BB theories at low and high
frequency limits for frequency (𝜈) and wavelength (𝜆) dispersion rules.

X→ 0 Y = 1/X→ 0

Rayleigh-Jeans, Planck Wien Rayleigh-Jeans Wien, Planck

𝜈 X2 X3 (IR deficit) 𝜈 X2 (UV catastrophe) X3·e−𝑋
𝜆 X4 X5 (IR deficit) 𝜆 X4 (UV catastrophe) X5·e−𝑋

4.4 The Q concept applied to BB spectra

Applying the material discussed in Sec. III to the BB spectra in Fig. 3 and Fig. 4 permits the
associated Q values to be found. The effective “Q” of a spectrum, by analogy with ordinary
resonance curves such as those in Fig. 1. (b), is taken as Q = X𝑝/Δ, where Δ is the half-maximum
width (“3-dB points”). The half-maximum points are determined from the two roots

(
X(±)

)
of the

equation
(

1
2XM

p

)
/
[
eXp − 1

]
=

(
XM)

/
[
eX − 1

]
. The relevant quantities are given, for M = 3, in

Table 3, and, for M = 5, in Table 4. In both cases Q is less than 1, and interestingly, the results are
independent of temperature.8 One could define blackbody Q in other ways, e.g., 𝜈𝑝/Δ𝜈 or 𝜆𝑝/Δ𝜆
using either M = 3 or 5 values of X, etc. For all such permutations, the effective Q < 1. Given, for
example in Table 4. are Q5(𝜆) = 𝜆𝑝/Δ𝜆 ≈ 0.831 and Q5(𝜈) = 𝜈𝑝/Δ𝜈 ≈ 0.926.

Table 3: Pertinent locations on the Planckian distribution function (Pl3) with frequency
parameterization (M = 3).

Location X Pl3(X)

Lower ½-power, X(−)
1/2 X(−)

1/2 = 1.1575 0.7107
Peak X𝑝 = 2.8214 1.4214
50%-area divisor X50% = 3.5030 1.3343
Upper ½-power, X(+)

1/2 X(+)
1/2 = 5.4116 0.7107

Δ3 = [X(+)
1/2 – X

(−)
1/2 ] ≈ 4.2541 Q3 ≈ 0.663

8 The temperature independence holds for the “N-dB” points, not just for the “3 dB” points; moreover, it is also independent of the M
value. For the ½-power (aka 3 dB) points, (½·X𝑀

𝑝 )/[exp(X𝑝) – 1] is a constant for a given value of M. The factor ½, designating
the half-power-points, could be any other value, e.g., the 1/3𝑟𝑑 (≈ 4.77 dB) or 1/100𝑡ℎ (20 dB) power-points, etc. The roots become
spread further apart as the dB value increases, and the definition of Q = X𝑝 /Δ must be adjusted accordingly.
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Table 4: Pertinent locations on the Planckian distribution function (Pl5) with wavelength
parameterization (M = 5).

Location Y Pl5(Y) X

Lower ½-power Y(−)
1/2 = 0.1235 10.6007 8.0966

50%-area divisor Y50% = 0.1779 20.3908 5.6218
Peak Y𝑝 = 0.2014 21.2014 4.9651
Upper ½-power Y(+)

1/2 = 0.3660 10.6007 2.7326
Δ5 = [Y(+)

1/2 – Y
(−)
1/2 ] ≈ 0.2424 Q5(𝜆) ≈ 0.831 Q5(𝜈) ≈ 0.926

5. COMPARISON OF STATISTICS AND M VALUES

Heald[9] considers other cases of integer dispersion rules. In addition to the rules M = 3 (𝜈 rule) and
M = 5 (𝜆 rule), that we have discussed, he mentions M = 2 (𝜈2 rule), and M = 4 (logarithmic rule =
intensity per percentage bandwidth, with peak at X𝑝 ≈ 3.9207); of particular note is his suggestion
that the median (50% of energy) rule be considered. The 50% divisor points are given in Table 3.
and Table 4. Another criterion of interest is the fraction of area (energy) confined between the half-
power points to the total area. Examples are shown in Table 5., along with the associated Q values.
If M is considered as a continuous variable, then as M increases, X𝑝 approaches M from below;
(for M = 4, it is within 2%); as M approaches 1 from above, X𝑝 approaches 0, and the peak value
approaches 1 from below. For M ≥ 2, the fraction of total area between the half-power points is
greater than 75%.

Table 5: Fractions of areas between ½-power points to total area, and Q values associated with
various line shapes. The Gaussian and Lorentzian functions describe, e.g., specific types of spectral
line broadening in gases and plasmas. Doppler broadening, due to thermal motion, is represented by
the Gaussian function. The Lorentzian function is used in connection with natural broadening (finite
radiative lifetimes), and collisional / pressure broadening (finite lifetimes due to collisions).9,10 The
first three entries are symmetrical in X; the others are not. The Gaussian ratio equals erf[ln(2)].

Spectral line shape, normalized Ratio (%) Q Comments

Gaussian exp(– (ln(2)·x2) ≈ 76.10 ½ ½-power points at X = ± 1
Lorentzian 1/(1 + X2) 50 ½ ½-power points at X = ± 1
RLC/BVD 1/[1 + Q2·(X – 1/X)2] 50 Q variable parameter Q
Bose-Einstein (Planck) X3/(e𝑋 – 1) ≈ 75.36 0.663 𝜈 dispersion
Bose-Einstein (Planck) X5/(e𝑋 – 1) ≈ 75.36 0.831 𝜆 dispersion
Maxwell-Boltzmann (Wien) X3/(e𝑋 – 0) ≈ 74.81 0.726 𝜈 dispersion
Fermi-Dirac X3/(e𝑋 + 1) ≈ 74.46 0.768 𝜈 dispersion

9 These functions may be combined, on the assumption that both mechanisms are independent, yielding the Voigt profile as their
convolution. The results must be obtained by numerical integration. The 50%-area point depends, moreover, on the admixture of
the distributions. See Desmond Walter Posener, “The shape of spectral lines: Tables of the Voigt profile,” Australian Journal of
Physics 12(2) (1959) 184-196; Vivek Bakshi and Robert J. Kearney, “New tables of the Voigt function,” Journal of Quantitative
Spectroscopy and Radiative Transfer 42(2) (1989) 111-115.

10 The index n may also be a rational fraction; this is a feature of quasiparticles in 2-D structures; See Jon Magne Leinaas and Jan
Myrheim, “On the theory of identical particles,” Il Nuovo Cimento 37B(1) (1977) 1-23; James Nakamura, Shuang Liang, Geoffrey
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Table 6: Q values computed by the ½-power method for three distributions, assuming frequency
parameterization (M = 3). The “resonance” curve is X3/(e𝑥 + n) versus X. For X→ 0, the R-J and
the asymptotic Planck slopes equal +2 on the logarithmic graph of Fig. 2., while theWien asymptotic
slope is +3. In this limit, any graph with n > 0 has an asymptotic slope of +3, but falls below the
Wien curve; for example, the F-D curve has an ordinate [3·log(X) – log(2)].

Statistics X3/(e𝑋 + n) X(−)
1/2 X𝑝 X(+)

1/2 Q

Bose-Einstein n = – 1 1.157465 2.821439 5.411575 0.6632
Maxwell-Boltzmann n = 0 1.394137 3. 5.525350 0.7262
Fermi-Dirac n = + 1 1.536495 3.131020 5.616138 0.7675

6. CONCLUSION

Ascribing the EE resonance parameter “quality factor” to the graphs arising from the physics concept
of BB radiation might seem more than a bit incongruous, but in the spirit of paying tribute to
Kirchhoff’s bicentennial, we have done just that! Apart from its obvious didactic value, the exercise
reveals that the equivalent “Q” of this totally incoherent photon fluid is lower than unity, (as might
be anticipated). However, this Q measure unexpectedly turns out to be independent of both the
temperature, and of the dispersion rule adopted.
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